Research Papers

Every research paper published herein can be downloaded, and use some of the data in this paper indicates that you agree to the terms and conditions of their authors. Beside that your research papers also can be published herein (please contact us).

Estimating PHILLIPS Curves in Turbulent Times Using The ECB’S Survey of Professional Forecasters

Gary Koop and Luca Onorante Estimating Philiph Curve-75

WORKING PAPER SERIES – NO 1422 / FEBRUARY 2012

 

Abstract:

This paper uses forecasts from the European Central Bank’s Survey of Professional Forecasters to investigate the relationship between inflation and inflation expectations in the euro area. We use theoretical structures based on the New Keynesian and Neoclassical Phillips curves to inform our empirical work and dynamic model averaging in order to ensure an econometric specification capturing potential changes. We use both regression-based and VAR-based methods. The paper confirms that there have been shifts in the Phillips curve and identifies three sub-periods in the EMU: an initial period of price stability, a few years where inflation was driven mainly by external shocks, and the financial crisis, where the New Keynesian Phillips curve outperforms alternative formulations. This finding underlines the importance of introducing informed judgment in forecasting models and is also important for the conduct of monetary policy, as the crisis entails changes in the effect of expectations on inflation and a resurgence of the “sacrifice ratio”.

Keywords: inflation expectations, survey of professional forecasters, Phillips curve, Bayesian, financial crisis.

JEL classification codes: E31, C53, C11

NOTE: This Working Paper should not be reported as representing the views of the European Central Bank (ECB). The views expressed are those of the authors and do not necessarily reflect those of the ECB.

Pengaruh Informasi Akuntansi Terhadap Return Saham

Pengaruh Informasi Akuntansi Terhadap Return Saham: Studi Empirik Terhadap 32 Perusahaan Consumer Goods yang Terdaftar di Bursa Efek Indonesia Tahun 2013

Ginanjar Syamsuar qr-code-pengaruh-informasi-akuntasi-terhadap-return-saham-75

gsyamsuar@gmail.com

Abstrak

Pengaruh Informasi Akuntansi Terhadap Return Saham: Studi empirik terhadap 23 perusahaan “consumer goods” yang terdaftar di Bursa Efek Indonesia tahun 2013. Secara simultan Informasi akuntansi Laba kotor, Arus kas infestasi, Arus kas operasi, dan Ukuran perusahaan berpengaruh signifikan terhadap Return Saham perusahaan consumer goods. Pada kajian ini teknik yang dibahas merupakan teknik analisis statistik inferensial kajian analisis regresi linier, yaitu teknik yang mendasarkan pada pemanfaatan data yang diperoleh dari suatu sampel acak, sehingga hasilnya merupakan gambaran keadaan populasi dari mana sampel acak tersebut diambil. Teknik statistik semacam ini memberikan jaminan bahwa kesimpulan dan penafsiran dibuat dengan tingkat kesalahan yang rendah, biasanya dipakai 0.05 (5 %) atau 0.1 (10%). Teknik analisis statistik yang dibahas dalam kajian ini bersumber pada SPSS (Statistical Package for the Social Sciences) yang difokuskan hanya pada teknik yang dapat menjelaskan hubungan atau kaitan antara beberapa variabel, baik hubungan antara dua variabel (bivariate) maupun banyak variabel (multivariate). Pembahasan diutamakan pada cara membaca dan menafsirkan arti dari parameter yang diperoleh dari hasil pengolahan data yang terdapat pada output  SPSS.

Kata kunci: Informasi akuntansi, Return saham, Analisis regresi SPSS, Consumer goods.

JEL Classification: C4, D63, I32

Poverty-Growth-Inequality Triangle: The Case of Indonesia

Indunil De Silva and Sudarno Sumarto

Senior Economist & Policy Adviser, respectively at The National Team for the Acceleration of Poverty Reduction (TNP2K), Indonesia, Vice-President Office.

Abstractdownload-buttons-75

This paper decomposes changes in poverty into growth and redistribution components, and employs several pro-poor growth concepts and indices to explore the growth, poverty and inequality nexus in Indonesia over the period 2002-2012. We find a ‘trickle-down’ situation, which the poor have received proportionately less benefits from growth than the non-poor.

All pro-poor measures suggest that economic growth in Indonesia was particularly beneficial for those located at the top of the distribution. Regression-based decompositions suggest that variation in expenditure by education characteristics that persist after controlling for other factors to account for around two-fifths of total household expenditure inequality in Indonesia. If poverty reduction is one of the principal objectives of the Indonesian government, it is essential that policies designed to spur growth also take into account the possible impact of growth on inequality. These findings indicate the importance of a set of super pro-poor policies. Namely, policies that increase school enrolment and achievement, effective family planning programmes to reduce the birth rate and dependency load within poor households, facilitating urban-rural migration and labour mobility, connect leading and lagging regions and granting priorities for specific cohorts (such as children, elderly, illiterate, informal workers and agricultural households) in targeted interventions will serve to simultaneously stem rising inequality and accelerate the pace of economic growth and poverty reduction.

Key Words: Growth, poverty, inequality, pro-poor, decomposition

JEL Classification: D31, D63, I32


 

Decomposition of Indonesia sectoral poverty in the reign period 1999-2011

Decomposition of Indonesia sectoral poverty in the reign period 1999-2011

 Ginanjar Syamsuar

Master of Planning and Public Policy, Faculty of Economics and Business, Universitas Indonesia, Jalan Salemba Raya 4, Jakarta 10430, Indonesia

      E-mail: gsyamsuar@gmail.commy-research-paper-75

Journal of Economic Literature (JEL) Classification: C4, H1, I3

 Abstract

The poverty information who published by Statistics Indonesia, there hasn’t been reported the changes of poverty size by sector of economic activity. By using susenas data years of 1999, 2004, 2009, and 2011, this research aims to calculate the changes of poverty size that occurred over the period of Indonesia policy during the reign 1999-2011 i.e. Propenas, RPJMN-I, and RPJMN-II, and to identify the sectors that contribute to changes in size. This research used sectoral poverty decomposition analysis. The results of the study show that in third of policy period has decreased the size of aggregate poverty, either P0 index, P1 and P2. The decreasing of aggregate poverty predominantly on Propenas, caused by the influence of intra-sectoral, meanwhile at RPJMN-I and RPJMN-II caused by the influence of intra-sectoral and inter-sectoral. Poverty reduction during the Propenas more evenly throughout the sectors which is aggregate poverty reduction contributed by all major employment sectors. Meanwhile at the RPJMN-I and RPJMN-II era, aggregate poverty reduction significantly was contributed only by the four main employment sectors on RPJMN-I i.e. the informal agricultural sector, formal/informal trade, formal/informal transportation, and formal/informal construction, and aggregate poverty reduction at the RPJMN-II was contributed by agricultural formal sector, formal trade, formal/informal transportation, and informal finance.

Keywords: Sectoral poverty decomposition; poverty size; Propenas; RPJMN-I; RPJMN-II

Dekomposisi Kemiskinan Sektoral Indonesia Pada Tiga Periode Pemerintahan Tahun 1999-2011

Abstrak

Informasi kemiskinan yang dipublikasikan oleh Badan Pusat Statistik (BPS), belum ada secara khusus membahas perubahan ukuran kemiskinan menurut sektor kegiatan ekonomi. Dengan data susenas tahun 1999, 2004, 2009, dan 2011, peneliti menghitung besarnya perubahan ukuran  kemiskinan agregat dan sektoral selama kebijakan Indonesia periode tahun 1999-2011 yaitu Propenas, RPJMN-I dan RPJMN-II, serta mengidentifikasi sektor-sektor yang berkontribusi terhadap perubahan ukuran kemiskinan agregatnya. Analisis yang digunakan adalah analisis dekomposisi kemiskinan sektoral. Hasil analasis diperoleh bahwa pada ketiga periode kebijakan terjadi penurunan ukuran kemiskinan agregat baik indeks P0, P1, maupun P2. Penyebab terjadinya penurunan ukuran kemiskinan agregat secara dominan pada Propenas diakibatkan oleh pengaruh intra-sektoral, sementara pada RPJMN-I dan RPJMN-II diakibatkan oleh pengaruh intra- sektoral dan antar-sektoral. Pengentasan kemiskinan pada masa Propenas lebih merata diseluruh sektor dimana penurunan tingkat kemiskinan agregatnya dikontribusi oleh seluruh sektor lapangan pekerjaan utama, sedangkan pada masa RPJMN-I dan RPJMN-II penurunan tingkat kemiskinan agregat secara signifikan hanya dikontribusi oleh empat sektor lapangan pekerjaan utama yaitu pada RPJMN-I oleh sektor pertanian informal, perdagangan formal/informal, transportasi formal/informal, dan konstruksi formal/informal, sementara pada RPJMN-II oleh sektor pertanian formal, perdagangan formal, transportasi formal/informal, dan keuangan informal.

Kata kunci: Dekomposisi kemiskinan sektoral; ukuran kemiskinan; Propenas; RPJMN-I; RPJMN-II

This research paper available on SSRN Journals


An Economic Geography of the United States: From Commutes to Megaregions

Garrett Dash Nelson

Affiliation Department of Geography and Society of Fellows, Dartmouth College, Hanover, New Hampshire, United States of America

Alasdair Rae

Affiliation Department of Urban Studies and Planning, University of Sheffield, Sheffield, United Kingdom ORCID http://orcid.org/0000-0003-0136-7659

Abstractdownload-buttons-75

The emergence in the United States of large-scale “megaregions” centered on major metropolitan areas is a phenomenon often taken for granted in both scholarly studies and popular accounts of contemporary economic geography. This paper uses a data set of more than 4,000,000 commuter flows as the basis for an empirical approach to the identification of such megaregions. We compare a method which uses a visual heuristic for understanding areal aggregation to a method which uses a computational partitioning algorithm, and we reflect upon the strengths and limitations of both. We discuss how choices about input parameters and scale of analysis can lead to different results, and stress the importance of comparing computational results with “common sense” interpretations of geographic coherence. The results provide a new perspective on the functional economic geography of the United States from a megaregion perspective, and shed light on the old geographic problem of the division of space into areal units.

mega1-50